A Clustering Bayesian Approach for Multivariate Non-Ordered Circular Data
نویسندگان
چکیده
This paper presents a Bayesian model for the clustering of nonordered multivariate directional or circular data. The particular trait of our data is that each single observation is made up of k ≥ 2 nonordered points on the circle. We introduce a hierarchical model that combines a symmetrization technique, Projected Normal distributions and a Dirichlet Process. One parameter is introduced to model the non-ordered trait and another one to control the variability of the angles on the circle. An informative prior on the relative locations of the k angles is also provided. The gain of the symmetrization is highlighted by a theoretical study. The parameters of the model are then inferred using a Metropolis-Hastings within Gibbs algorithm. Simulated datasets are analyzed to study the sensitivity to hyperparameters. Then, the benefits of our approach are illustrated by clustering real data made up of the positions of five separate radiotherapy x-ray beams on a circle.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملMultivariate kernel partition processes
This article considers the problem of accounting for unknown multivariate mixture distributions within Bayesian hierarchical models motivated by functional data analysis. Most nonparametric Bayes methods rely on global partitioning, with subjects assigned to a single cluster index for all their random effects. We propose a multivariate kernel partition process (KPP) that instead allows the clus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017